Fast subtree kernels on graphs

نویسندگان

  • Nino Shervashidze
  • Karsten M. Borgwardt
چکیده

In this article, we propose fast subtree kernels on graphs. On graphs with n nodes and m edges and maximum degree d, these kernels comparing subtrees of height h can be computed in O(mh), whereas the classic subtree kernel by Ramon & Gärtner scales as O(n4h). Key to this efficiency is the observation that the Weisfeiler-Lehman test of isomorphism from graph theory elegantly computes a subtree kernel as a byproduct. Our fast subtree kernels can deal with labeled graphs, scale up easily to large graphs and outperform state-of-the-art graph kernels on several classification benchmark datasets in terms of accuracy and runtime.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Aligned Subtree Kernel for Weighted Graphs

In this paper, we develop a new entropic matching kernel for weighted graphs by aligning depthbased representations. We demonstrate that this kernel can be seen as an aligned subtree kernel that incorporates explicit subtree correspondences, and thus addresses the drawback of neglecting the relative locations between substructures that arises in the R-convolution kernels. Experiments on standar...

متن کامل

Weisfeiler-Lehman Graph Kernels

In this article, we propose a family of efficient kernels for large graphs with discrete node labels. Key to our method is a rapid feature extraction scheme based on the Weisfeiler-Lehman test of isomorphism on graphs. It maps the original graph to a sequence of graphs, whose node attributes capture topological and label information. A family of kernels can be defined based on this Weisfeiler-L...

متن کامل

The pyramid quantized Weisfeiler-Lehman graph representation

Graphs are flexible and powerful representations for non-vectorial data with inherited structure. Exploiting these data requires the ability to efficiently represent and compare graphs. Unfortunately, standard solutions to these problems are either NP-hard, hard to parametrize or not expressive enough. Graph kernels, that have been introduced in the machine learning community the last decade, i...

متن کامل

Information theoretic graph kernels

This thesis addresses the problems that arise in state-of-the-art structural learning methods for (hyper)graph classification or clustering, particularly focusing on developing novel information theoretic kernels for graphs. To this end, we commence in Chapter 3 by defining a family of Jensen-Shannon diffusion kernels, i.e., the information theoretic kernels, for (un)attributed graphs. We show ...

متن کامل

A Fast Approximation of the Weisfeiler-Lehman Graph Kernel for RDF Data

We introduce an approximation of the Weisfeiler-Lehman graph kernel algorithm aimed at improving the computation time of the kernel when applied to Resource Description Framework (RDF) data. RDF is the representation/storarge format of the semantic web and it essentially represents a graph. One direction for learning from the semantic web is using graph kernel methods on RDF. This is a very gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009